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Abstract

The domain generalization scheme aims to learn a model with
strong generalization ability for multiple fields with different
data distribution, so as to obtain better results in the unknown
test dataset. Among them, most of the existing work of do-
main generalization focuses on the evaluation on the image
classification datasets. For the more challenging object recog-
nition task, the current research progress is very little.Aiming
at the problems that the data collected from the actual applica-
tion scene in the target detection task and the data used in the
model training do not meet the independent and identically
distributed criterion, which leads to the decline of the classifi-
cation accuracy of the object detection model, the increase of
the missed detection rate of the detection frame, the poor gen-
eralization ability and so on, this dissertation carries out the
research on the domain generalization algorithm of the object
detection based on machine learning, It is proposed to fully
extract the cross domain information through the domain la-
bel and build a three-level graph convolution network at the
pixel level, instance level and domain level. The loss function
of the graph convolution network guides the model to build a
cross domain generalized centroid, so that the model focuses
on the domain invariant information in the process of object
detection, strengthens the connection of different features of
similar objects in the graph relationship network, and short-
ens the distance between similar objects in each domain in the
feature space, To improve the accuracy of model detection.
The project is verified on the dataset for the domain general-
ization task of object detection, which is collected and labeled
by ourselves, and has four different data distributions. The re-
sult is better than the existing hybrid training algorithm, and
has better generalization effect on the more abstract target do-
main, which greatly improves the ability of the model to be
extended to the unknown domain.

lntroduction
Research Background
Target detection is one of the most widely concerned
tasks in the field of machine vision. Currently, deep learn-
ing(Krizhevsky, Sutskever, and Hinton 2012) has become
the mainstream solution in detection tasks. However, most
current deep learning work still requires a large number of
labeled samples as training data, and it is assumed that the
training samples and test samples follow the requirements of
Independent and Identical Distribution (IID)(Liu 2017). In

practical applications, this requirement is difficult to meet.
For example, in the target detection task, due to the influence
of image acquisition equipment, illumination, weather, etc.,
it is difficult for data from different sources to satisfy the as-
sumption that training data and test data are independent and
identically distributed, and domain shift phenomenon(Ganin
et al. 2016) appears. In turn, the target detection model that
performed well on the training data has problems such as de-
creased target classification accuracy and inaccurate detec-
tion frame positions. In addition, due to the complexity and
large amount of parameters of the deep learning model, it is
easy to have overfitting problem during the training process,
so it is more sensitive to domain shift. How to effectively use
labeled data and reduce the waste of data resources has be-
come one of the key issues in computer vision research. At
present, the transfer learning theory represented by domain
generalization and domain adaptation has become one of the
mainstream methods to solve non-IID problems. At present,
the domain adaptation theory has been used in target detec-
tion(Chen et al. 2020, 2021), but the domain adaptation al-
gorithm needs to use unlabeled test data in the training pro-
cess. Such target domain unlabeled data is not easy to obtain
in practical application scenarios. Therefore, compared with
domain adaptation, domain generalization is more suitable
for practical applications because it does not need to use tar-
get domain data in the training process, and only uses la-
beled multi-source domain data to train a model with good
generalization performance.

Based on the above background, this paper proposes a
novel domain generalization target recognition model based
on graph convolutional network, and collects and labels arti-
ficially simulated domain differences, and has four different
data distributions for target detection domain generalization
tasks. Verification is carried out on the data set to solve the
problem that the training data in the target detection task and
the data collected in the actual application scene do not meet
the independent and identical distribution criterion, which
leads to the decline of the model generalization ability, and
improve the ability of the model to generalize to unknown
domains.

Research Progress
Domain Adaptation With Object Detection The
premise of the domain adaptation algorithm is that when



the task conditions are the same, the data distribution of
the source domain sample data set of the training set and
the target domain sample data set of the test set do not
satisfy the independent and identical distribution setting. It
is committed to improving the generalization performance
of the prediction model trained in the source domain to
the target domain, mainly by reducing the domain-related
features extracted by the model in the source domain data
set to solve the domain shift problem.

The mainstream domain-adaptive target detection
method, there are three main methods to solve the domain
shift problem: fine-tuning based domain-adaptive target
detection, source domain data to generate pseudo-labels
for fine-tuning (Khodabandeh et al. 2019) or migration to
real scenes via synthetic datasets(Cai et al. 2019). Domain-
adapted target detection based on semantic alignment,
by comparing the feature differences at different levels
between different domains, guides the classifier to perform
semantic alignment (Chen et al. 2018), and learns domain-
invariant features (Zhu et al. 2019). Based on reconstruction
domain adaptive target detection, the source domain data or
target domain data are reconstructed to improve the model
performance within a specific feature distribution(Arruda
et al. 2019; Lin 2019). At present, better performance can
be achieved by mixing multiple domain adaptive target
detection methods, which mainly enhance local discrim-
inability (Chen et al. 2020) by adversarial training and
capturing potential complementary effects between global
context information, or for samples with scarce Classes and
variable samples are assigned greater weights, and features
are forced to be aligned in cross-domain samples(Chen et al.
2021), and instance-invariant features are implicitly learned
by exploring the natural features of unlabeled target domain
data and training data, so that the model is in contact with
After the target domain data can quickly match the features
of the labeled training data, and then achieve the purpose of
domain adaptation.

Domain Generalization With Object Detection Domain
generalization cannot acquire any information of target do-
main data during training, so it is more challenging for do-
main generalization methods to extract generalized, trans-
ferable features from source domain samples. Domain gen-
eralization aims to learn a system that can maintain uniform
and good performance across multiple different data distri-
butions. Existing domain generalization methods can be di-
vided into three categories (Wang et al. 2021): one is data
manipulation, which increases the diversity of data through
the enhancement and generation of training data. The sec-
ond is representation learning, that is, domain-invariant rep-
resentation learning, which is similar to domain adaptation.
The purpose is to make the model adapt well to different
fields. The learning of domain-invariant features mainly in-
cludes: Kernel methods, explicit feature alignment, domain
adversarial training, and invariant risk minimization. The
third is the learning strategy, which introduces mature learn-
ing methods in machine learning into cross-domain train-
ing, mainly based on ensemble learning and meta-learning
methods to make the model more generalizable. In addition,

self-supervised training can also be used in domain general-
ization.

At present, domain generalization has not been introduced
into the target detection task, because without contact with
the target domain data, the model has a strict limit on the
distribution range of the feature space where the object can
be detected. In the area of the space, the performance of the
model is degraded, and it is very prone to false detection and
missed detection. In the target detection task, for the situa-
tion where the category domain is invisible, that is, the zero-
sample problem, a feature synthesizer can be constructed to
generate domain features and corresponding domain labels
(Huang et al. 2022) for unseen classes, but it can only be
used in a certain To a certain extent, it solves the problem
of false detection, but there is still a distance from practical
application. In view of the fact that the distribution of the tar-
get domain closer to real life is invisible, the current study is
how to generalize the model to a wider feature space on the
basis of only contacting limited source domain data, so that
the target detection model is applicable to a variety of Com-
plex scenes are the most difficult point in the generalization
task of target detection domain.

Main Content and Contributions
Aiming at the problems that traditional target recognition al-
gorithms have limited training tasks, insufficient generaliza-
tion experience, and insufficient correlation mining within
data sets, this paper explores the domain generalization tar-
get recognition task. First of all, this model adopts a cross-
domain training mode, which enriches the type and quantity
of tasks by using the labels of each domain. The distribution
of target domains in tasks is no longer limited to a single
domain distribution, which is more in line with the mixed
data sources and changeable data sources in actual applica-
tion scenarios. imaging conditions. Secondly, this model in-
troduces a learnable graph convolutional neural network to
construct topological relationships at three levels of pixels,
instances, and domains, and introduces cosine similarity into
the construction of an adjacency matrix. Thirdly, this model
adopts a learning and training method that is less related to
the feature extractor for parameter updating, giving full play
to the guiding role of the learnable cross-domain generaliza-
tion centroid in the parameter updating process. The method
proposed in this paper exposes the model to a wider range
of domain shift scenarios by modifying the settings of the
domain generalization task, enriches the generalization ex-
perience, optimizes the feature space, and thus improves the
generalization ability of the model. The experimental results
show that the classification accuracy and detection accuracy
of the algorithm proposed in this paper exceed the existing
hybrid training model in the target detection task, and it has
a better generalization effect on the data set with a larger do-
main shift, which greatly improves It improves the ability of
the model to generalize to unknown domains.

Basic Theory
In recent years, deep learning has performed well in the
fields of computer vision, medical image processing, and



natural language processing. Among them, Convolutional
Neural Network (CNN), with its powerful feature extrac-
tion capabilities in the field of digital images, has produced
far-reaching academic influence and huge commercial value
in academic research and industry. However, the traditional
convolutional neural network can only deal with Euclidean
space data such as digital images and speech, and the data
in these fields has translation invariance. In order to speed
up the operation and reduce the amount of parameters, we
can use this feature to define a globally shared convolution
kernel in the input data space, thereby defining a convolu-
tional neural network. Since the past five years, graph data
has been introduced into the deep learning model (Kipf and
Welling 2016). Data structures such as graphs can express
real data in real life more naturally and intuitively, such as
traffic routes and social network relationships. Wait. Differ-
ent from digital image or speech data, the local structure of
each node in graph data is different, which makes the trans-
lation invariance no longer satisfy (Shuman et al. 2013), and
the learning method of graph convolution can be used to pur-
posefully use the graph structure to describe Adjacent nodes,
and information aggregation, for tasks with obvious differ-
ences in data distribution, the information exchange between
nodes in the topology can achieve the purpose of improving
the generalization ability of the model. This chapter will in-
troduce the theoretical knowledge of target recognition net-
work and graph convolutional network.

Theory of Object Detection
Overview of Object Detection Neural Network The
three major tasks in the field of computer vision are clas-
sification, detection, and segmentation. Image classification
models are used to match image content to a single cate-
gory, using annotation information to artificially specify cat-
egories of interest. Most of the pictures in the real world are
not close-ups of a single object. It is not accurate and prac-
tical to assign a single label to the image. For the situation
where there are many types of objects in the picture and all
of them need to be assigned labels and determine their posi-
tions, a target detection model is required. The target detec-
tion model can identify multiple objects in a frame captured
by a picture or a video, and can locate different objects, that
is, give a bounding box.

Target detection is essentially an image segmentation
based on geometric and statistical features, which combines
the segmentation and recognition of objects of interest in the
picture. Its accuracy and real-time performance are an im-
portant indicator of the system. In recent years, target Detec-
tion of face recognition, unmanned driving and other fields
have been widely used. However, during the detection pro-
cess, the acquisition equipment will be affected by factors
such as angle, occlusion, light intensity, weather, etc., which
will lead to image distortion of the target to be recognized,
that is, the change of feature distribution, which adds new
challenges to target detection.

It divides the detection problem into two stages. First, the
region proposals (Region Proposals) are generated, then they
are classified, and the positions are refined. The typical rep-
resentative of this type of algorithm is the R-CNN algorithm,

such as R-CNN, Fast R-CNN, Faster R-CNN, etc.
The classic two-stage target detection model Faster R-

CNN(Ren et al. 2015) can be divided into four modules:

Figure 1: Basic structure of Faster R-CNN(Ren et al. 2015)

The main performance indicators of the target detection
model are accuracy and speed. For accuracy, target detection
must consider both the classification accuracy of each target
and the accuracy of the bounding box positioning. Accuracy
and speed are often inversely proportional, how to balance
the two is an important direction of target detection algo-
rithm research.

Theory of Domain Generalization
Basic Theory of Domain Generalization The problem
of domain generalization (Domain Generalization, DG) re-
search is to learn a model with strong generalization ability
from several data sets (domains) with different data distri-
butions, so as to achieve better results on the unknown test
set.

The biggest difference between domain generalization
and domain adaptation (Domain Adaptation, DA): domain
adaptation in training, both source domain and target do-
main data can be accessed (only unlabeled target domain
data in unsupervised domain adaptation); In the generaliza-
tion problem, we can only access several source domain data
for training, and the test data cannot be accessed. There is no
doubt that domain generalization is a more challenging and
practical scenario than domain adaptation, and practical ap-
plications tend to produce machine learning models that are
sufficiently generalized in one training session.

Definition of Domain Generalization We can define the
domain generalization problem as shown in 2. The follow-
ing will briefly introduce the concept of domain and domain
generalization.

Let X denote a non-empty input space, Y denote an out-
put space, and the domain consists of data sampled from the
corresponding dataset distribution. we denote it as

S = {(xi, yi)}ni=1 ∼ PXY (1)

Where x ∈ X ⊂ Rd, y ∈ Y ⊂ R represents the label,
PXY represents the joint distribution of input samples and



Figure 2: Domain generalization diagram(Wang et al. 2021)

output labels. X and Y represent the corresponding random
variables.

In the definition of domain generalization, we assume that
given M training source domains

Strain =
{
Si | i = 1, · · · ,M

}
(2)

where Si =
{(

xi
j , y

i
j

)}ni

j=1
represents the ith domain,

and the domains are subject to different distributions, that
is, P i

XY ̸= P j
XY , 1 ≤ i ̸= j ≤ M . The goal of do-

main generalization is to learn a generalized prediction func-
tion h : X → Y such that it is in the target domain Stest
(P test

XY ̸= P i
XY for i ∈ {1, · · · ,M}) has the smallest predic-

tion error, namely:

min
h

E(x,y)∈Stest [ℓ(h(x), y)] (3)

Where E and ℓ(·, ·) are both loss functions.

Theory of Graph Convolutional Network
Basic Theory of Graph Neural Network In computer
science, the graph data structure is composed of two parts:
node (Vertice) and edge (Edge). A graph G is described by
a set of vertices V and a set of edges E contained in the
graph. The direction dependency between nodes determines
whether the edge is directed or undirected. Nodes can also
be called vertices. In this paper, the two are equivalent.

Graph Neural Network (GNN) is a neural network built
on the basis of graph structure. A common application sce-
nario of GNN is node classification. Each node in the graph
we construct is associated with a label. There are unlabeled
nodes in the graph. We hope to classify unlabeled nodes
through nodes with known labels.

Any node v of the graph is represented by its feature xv ,
and the label tv that has been annotated is associated with it,
through a given part The marked graph G uses the marked
nodes to predict the unmarked node labels, and obtains the
state information hv of each node through training. In the
continuous aggregation operation hv also contains informa-
tion about neighboring nodes.

hv = f
(
xv,xco[v],hne[v],xne[v]

)
(4)

xco[v] represents the characteristics of the edge connected
to the vertex v, hne[v] represents the neighbor node of the
vertex v State information, xne[v] represents the neighbor
node characteristics of vertex v. f is the transfer function
that projects the input to the d dimensional space. For each
aggregation and update operation of hv , rewrite the above
equation for iterative update as follows.

Ht+1 = F
(
Ht,X

)
(5)

H and X denote all connections of h and x respectively,
by putting state hv And the feature xv is passed to the output
function g to calculate the output ov .

ov = g (hv,xv) (6)

Both f and g here can be interpreted as a fully connected
feedforward neural network.

Algorithm of Graph Convolutional Network Graph
Convolutional Network (Kipf and Welling 2016) (Graph
Convolutional Network, GCN) was proposed in 2017. The
operation of convolution on the graph provides a new idea
for processing graph-structured data, and provides a com-
bination of digital images and graph data in deep learning.
Widen the road.

Graph convolutional networks can be divided into spec-
tral convolutions and spatial convolutions(Niepert, Ahmed,
and Kutzkov 2016). Spectral convolution moves the filter
and graph data in the network to the Fourier domain at the
same time for processing. The convolution in the spatial do-
main is more intuitive, directly connecting the nodes of the
graph in the spatial domain to form a hierarchical structure
and perform convolution.

For graph G, its Laplacian matrix is defined as

L = D −A (7)

Where L is the Laplacian matrix, D is the degree matrix,
and the elements on the diagonal are the degree of the vertex,
that is, the number of elements linked by the element, A It is
an adjacency matrix (Adjacency matrix), that is, it represents
the adjacency relationship between any two vertices, and the
adjacency is 1, and the non-adjacency is 0.

The connection relationship of graph G = (V,E) is re-
flected in the adjacency matrix A and degree matrix D of
the graph. Usually, we need to normalize the Laplacian ma-
trix to get a symmetric normalized matrix

Lsys = D−1/2LD−1/2 (8)

Our analysis of the graph can be regarded as the analysis
of its Laplacian matrix.

A Domain Generalized Object Detection
Model Based on Graph Convolutional

Network
Task Description
This paper follows the setting of the common domain gen-
eralization task (Li et al. 2018). where X and Y denote
the input space and label space respectively, assuming that



there are K visible on the joint space X × Y Source do-
main D = {D1, D2, · · · , Dk}. This work focuses on com-
mon classification tasks, therefore, Y is the domain-shared
set of discrete numbers Y = {1, 2, · · · , C}, where C Indi-
cates the number of categories contained in the dataset. As
for the input space X , the data sample is from the dataset
Dk = {(xn, yn)}Nk

n=1, where Nk is the total number of la-
beled samples in the source domain Dk. The goal of the do-
main generalization task is to use multiple visible source do-
mains D to learn a model f : X → Y that generalizes well
to any novel target domain Dte, where the multiple source
and target domains cover the same set of categories but have
different distributions of statistics. During model learning,
the domain generalization task assumes that the target do-
main does not have any available information, and the model
focuses on learning a domain-invariant but class-dependent
latent feature space based on all source domain data.

Motivation
The domain generalization task focuses on learning a model
with strong generalization ability and good performance in
completely unknown data distribution applications through
several data sets with different data distribution character-
istics. In the field of computer vision and natural language
processing, because the model training data can only access
several source domain data with the same task and different
distributions, but the test data cannot be accessed, so most
of the current existing work focuses on designing models
suitable for domains. training methods, and they are often
evaluated on image classification datasets.

The object detection task is to find out all the objects arti-
ficially set in the digital image and determine their category
and location, and its focus is on:

1. Classification problem: which category does a picture or
image in a region belong to.

2. positioning problem: the target may appear anywhere in
the image.

3. size issue: objects come in various sizes.
4. shape problem: objects may have various shapes.

Since various objects have different appearances and are
interfered by factors such as light and weather during imag-
ing, and the sensor models of the acquisition equipment are
different, the images used as training data are often not sat-
isfied with the same distribution, resulting in the same dis-
tribution of data. The model trained on the above performs
poorly when applied to another data with a different distri-
bution. This phenomenon is especially obvious in the field
of object recognition.

The popular standard data sets in the current domain gen-
eralization problem mainly include Office-Caltech, PACS,
VLCS, etc., without exception, are data sets for classifica-
tion tasks, although domain generalization is widely used in
semantic segmentation, medical image processing and other
fields , but most of the current operations are training after
simulated domain shift through data augmentation.

At present, there is no dedicated data set for the general-
ization task of target recognition domain. Therefore, in or-

der to achieve better target detection results in source do-
main data with different distributions, this paper will build
a self-built data set and collect data with different distribu-
tions. The characteristic images are self-labeled to meet the
experimental needs and provide training data convenience
for researchers in related fields.

The graph neural network models unstructured data into
structured graphs, and uses these graphs to generate higher-
level, more generalized models. Its brain-like information
processing method does not pay too much attention to the
uniqueness of a certain data set. Instead, it focuses on inter-
class features with stronger universality, which is conducive
to enhancing the generalization ability of the model and has
the characteristics of learning to learn.

Based on the above, the goal of this paper is to collect and
label a data set suitable for the generalization of the target
recognition domain, and to provide a target detection algo-
rithm based on graph convolutional networks that has good
performance on source domain data with different distribu-
tions.

Proposed Modules
The algorithm given in this paper is verified on the Faster-
Rcnn model with VGG16 as the backbone network. Based
on the challenges faced by the above-mentioned target de-
tection domain generalization task and the advantages of the
graph convolutional network, this paper focuses on three as-
pects: pixel level, instance level, and domain level. Each
level constrains the inherent semantics of digital images,
and fully explores the correlation between categories and be-
yond categories in the process of target detection. The over-
all structure of the network is shown in 3, and the FasterRcnn
network structure is not fully displayed.

Pixel-level image convolutional network: extract the high-
level feature map in the backbone network, downsample to
an appropriate size (20*20), use the relative distance be-
tween pixels as the weight, and weight the object area in
the image to obtain the target The pixel distance of the tar-
get. After that, the adjacency matrix of the graph convolu-
tional network is constructed based on the cosine similarity
between the pixels of the feature map, and the pixel distance
is constrained so that the adjacency matrix acts on the pixels
containing the target, and the fused features are input into the
fully connected layer to obtain pixel-level The loss is used
to guide the classification.

In this layer of graph convolutional network, we agree on
the functions and their corresponding functions as follows:

B is used to judge whether the pixel in the current feature
map is the marked real object frame

D is used to calculate the relative distance of each pixel
in the feature map

S is used to calculate cosine similarity
E Cross entropy loss function
C classifier
N regularization function
The pixel-level image convolutional network first con-

structs the relationship between the middle and high-level
feature map xp and the pixels of the real label frame to form
a mask related to the pixel distance and the real target:



Figure 3: The overall structure of the model

Maskpixel = B(xp)⊙D(xp)

Then use the cosine similarity to explore the internal cor-
relation of the feature map pixels, and use the above mask
as the similarity weight to construct the adjacency matrix
between pixels:

Matrixsimi = N(Maskpixel ⊙ S(xp,xp
T ))

The pixel-level graph convolutional network module can
be regarded as GCNp, and the feature map is assigned to the
original feature after the feature fusion between each pixel
through the adjacency matrix:

xp = GCNp(xp,Matrixsimi)

The fused features and original labels compute the
pixmap convolutional cross-entropy loss for backpropaga-
tion:

Losspixel = E(C(xp), label)

Instance-level graph convolutional network: In the Faster
R-cnn model, the pooled features are sorted by confidence,
select instances with higher confidence, and strengthen the
semantic constraints of different parts of the same instance
by constructing the internal adjacency matrix of the instance.
That is, to enhance the internal correlation of the category,
the instance after feature fusion is input into the fully con-
nected layer, and the instance-level loss is obtained to guide
the classification.

The agreed functions and their functions in this hierarchi-
cal graph convolutional network are the same as above. For
this layered network, the newly added functions and their
functions are as follows:

Q Calculate the similarity and difference matrix of labels
between instances

Instance-level masks associated with classes are available:

Maskinstance = Q(label, labelT)

For instance-level features xi, we can construct such an
adjacency matrix to strengthen the relationship between dif-
ferent types of features of the same category instance:

Matrixsimi = N(Maskinstance ⊙ (1− S(xi,xi
T )))

The instance-level graph convolutional network module
can be regarded as GCNi, which fuses the instance features
with high confidence through the adjacency matrix and as-
signs them to the original features:

xi = GCNi(xi,Matrixsimi)

The fused instance-level features and original labels com-
pute the instance graph convolutional cross-entropy loss for
backpropagation:

Lossinstance = E(C(xi), label)

Domain-level graph convolutional network: The above
two modules are commonly used in most target detection
tasks. For the datasets studied in this paper, there are obvious
domain shifts. In order to make full use of domain labels, the
instance features from the two domains are in the Under the
guidance of the label, select the characteristics of each cat-
egory that can best represent the instance and domain, and
construct an adjacency matrix under cross-domain seman-
tic constraints. The fused features from the two domains are
input into the fully connected layer to obtain domain-level
losses. Used to guide classification.



The agreed functions and their functions in this hierarchi-
cal graph convolutional network are the same as above. For
this layered network, the newly added functions and their
functions are as follows:

W is used to calculate the single-domain instance-level
adjacency matrix weight

[] represents the matrix splicing operation
For cross-domain features xd1 and xd2, and their corre-

sponding labels labeld1 and labeld2, first get its single-
domain adjacency matrix weight:

Weightd1 = W (xd1, labeld1)

Weightd2 = W (xd2, labeld2)

In order to form a cross-domain graph convolutional
network, we perform matrix splicing operations on cross-
domain features, cross-domain labels, and cross-domain
weights:

xd = [xd1,xd2]

labeld = [labeld1, labeld2]

Weightd = [Weightd1,Weightd1]

At this point an adjacency matrix can be constructed:

Matrixsimi = N((1−Weightd)⊙ S(xd,xd
T ))

The cross-domain graph convolutional network module
can be regarded as GCNd, which is assigned to the original
feature after cross-domain feature fusion through the adja-
cency matrix:

xd = GCNd(xd,Matrixsimi)

The fused cross-domain features and the original cross-
domain labels calculate the instance graph convolution
cross-entropy loss for backpropagation:

Lossdomain = E(C(xd), labeld)

For the above three image convolutional network loss
functions, add coefficients to control the degree of gradi-
ent descent, so that the pixel image convolutional network
loss Losspixel coefficient is αP , similarly, the example map
The convolutional network loss Lossinstance coefficient is
αI , and the cross-domain graph convolutional network loss
Lossdomain coefficient is αD. The total loss coefficient is
set to βG, the loss in the Faster R-cnn model is defined as
Lossmain, and the total loss function of the model can be
obtained as follows:

Loss = Lossmain + βG(αPLosspixel

+αILossinstance

+αDLossdomain)

(9)

In addition, in view of the above-mentioned differences
in the amount of module information and task complexity,
the pixel-level graph convolutional network GCNp adopts
a smaller-scale graph convolutional network, and the num-
ber of hidden layer nodes is set to 256, 128; instance-
level GCNi and domain-level graph convolutional network

GCNd are larger in scale, and the number of hidden layer
nodes is 2048 and 1024. At the same time, in order to pre-
vent over-fitting, 10% of the nodes in the network will be
randomly set as inactive nodes.

Experimental Validation
In this chapter, experimental verification of the model in-
troduced above will be carried out. This chapter firstly in-
troduces the design of the data set for cross-domain target
recognition in detail, and then provides the experimental re-
sults on this data set to verify the algorithm proposed in
Chapter 3.

Self-made Domain Generalized Datasets of Object
Detection
In the domain generalization research, a large number of
scholars focus on improving the generalization ability of
models in natural image classification tasks, and put for-
ward a series of solutions and data sets. Common natural
image datasets used for domain generalization of classifica-
tion problems include handwritten character dataset MNIST
and target recognition benchmark dataset VLCS(Fang, Xu,
and Rockmore 2013). No data set for target detection do-
main generalization task has yet appeared. Therefore, this
paper collected and labeled pictures from three domains as
experimental data set, combined with VOC2007 data set, a
total of four data sets with different parts for experimental
verification and exploration.

The dataset we collected and labeled is used for the study
of generalization of target recognition domain, such as ??,
which contains four domains with very serious distribution
differences – photos (VOC2007), sketches (sketch22), wa-
tercolors (watercolor22), and cartoon (clipart22). There are
20 categories of samples: motorbike, bird, pottedplant, boat,
car, person, cow, chair, bus, bicycle, diningtable, tvmonitor,
bottle, aeroplane, sheep, dog, horse, cat, sofa, train.

In order to ensure the accuracy, effectiveness and stability
of the domain generalization target detection algorithm ver-
ified on this dataset as much as possible, it is necessary to
label as many and accurate images as possible, as shown by
1. In this paper, a total of 4050 pictures in sketch22, water-
color2021 and clipart22 were marked with 9720 detection
boxes, each picture contained 2.4 objects of interest.

In object detection, we want to classify high-dimensional
data more accurately, so the model we build should be able
to optimize the feature spatial distribution of data with dif-
ferent distributions, that is, reduce the spacing between the
same type and expand the spacing between different types.

Experimental Validation on Cross Domain
Datasets
Implementation Details There are obvious distribution
differences among the domains of the self-made data set,
which is very challenging. The model is based on the pre-
trained VGG16 on ImageNet as the backbone network. In
the experiment, batch size of the training set bs = 2, ini-
tial learning rate lr = 1e − 3, number of training rounds
epochs = 7, and iters= the number of pictures/batch size in



Table 1: Number of tags and images per field

VOC2007 sketch22 watercolor22 clipart22
motorbike 759 31 24 119

bird 1175 138 181 253
pottedplant 1217 113 176 468

boat 791 117 121 151
car 3185 82 180 276

person 10674 447 477 2030
cow 685 99 99 145
chair 2806 242 144 494
bus 526 31 43 122

bicycle 807 48 57 119
diningtable 609 50 19 137
tvmonitor 728 48 36 142

bottle 1291 77 70 241
aeroplane 642 67 48 160

sheep 664 81 88 151
dog 1068 54 71 136

horse 801 121 141 137
cat 759 51 24 142
sofa 821 58 31 107
train 630 72 65 65

Picture number 9963 1000 1050 2000

each training round. In order to promote the convergence of
the model, the learning rate was adjusted to lr = 1e−4after
5 rounds of training.

For the multiple loss functions used in the classification
of auxiliary networks in this paper, the degree of gradi-
ent descent is controlled by coefficient, and the coefficients
αP = 0.05, αI = 0.1, αD = 0.1, The convolution loss
coefficient of the total graph is set to βG = 0.2.

Experimental Contents The problem to be solved by the
model proposed in this paper is target recognition domain
generalization task. In order to further prove the universal-
ity of the method proposed in this paper, the experimental
performance of this method is verified on the above data
set. In order to compare the performance of the methods,
the experiment follows the experimental setting of ”Leave
one method” (Li et al. 2018), that is, assuming that there are
Ndifferent domains in the data set, n − 1domains are se-
lected as the source domain, and the remaining one domain
is the target domain for testing. In addition, in order to better
verify the influence of the proposed algorithm on the model,
some ablation experiments are also added in this paper for
further exploration and analysis.

The experimental code language of this chapter is Python,
and the convolutional neural network is implemented based
on Pytorch. The code runs on the following hardware config-
urations: Intel(R) Xeon(R) CPU, 2.30GHz main frequency,
32GB system memory, NVIDIA P100 video card, 16GB
video memory.

In target detection tasks, unilateral evaluation indexes are
commonly used as follows:

(Precision): TP/(TP + FP)
(Recall): TP/(TP + FN)
PR curve: Precision-Recall curve
AP: Area under PR curve

In this experiment, mAP(mean Average Precision), a
common comprehensive performance index used in target
detection, was used to evaluate the performance, that is, the
average AP of each category.

In this experiment, the benchmark algorithm DeepAll is
compared with the algorithm proposed in this paper. 2 sum-
marizes the target recognition results on the self-made data
set. The experimental results of the benchmark algorithm
come from the same parameter Settings. The statistical re-
sults prove that the performance of the proposed algorithm is
improved in multi-domain target detection tasks. Compared
with the DeepAll algorithm, the proposed method improves
the mAP by 3.92%. In this method, various kinds of features
in the training process are modeled through the graph rela-
tional network, thus improving the ability of the model to be
extended to unknown domains.

It is worth mentioning that this paper has better general-
ization effect on more abstract target domains. For example,
in the generalization task with sketch as the target domain
with the maximum domain offset, mAP of the method in
this paper is 4.97% higher than the benchmark algorithm,
and in the task with clipart as the target domain, it is even
7.41% higher. It fully embodies the excellent generalization
performance of the model.

mAP index numerically illustrates the good performance
of the algorithm in this paper. In order to demonstrate the
great improvement of the algorithm in the visual experi-
ence of human eyes, the gradient-based method (Selvaraju
et al. 2017) is used to draw the feature map. The warmer
the heat map is, the more the network pays attention to this
feature. As shown in 4, 5, 6, 7, When detecting different ob-
jects, the network sometimes pays too much attention to the
partial features of a certain kind of object rather than the
overall semantic information of the object, which is easy to
affect the classification of the network and the positioning
of the detection frame under the circumstances of occlusion
and illumination change. After modeling the image convo-
lutional network of pixel level, instance level, domain level
and object, it can be clearly seen that the coverage of thermal
map becomes larger and the focus of feature points becomes
more. The algorithm in this paper can guide the network to
observe the universality characteristics of a certain type of
object rather than focusing on the local area, so that the net-
work has better generalization performance.

In addition, the proposed algorithm also made some
achievements in improving the recall ratio of the network.
As shown in 8, the benchmark algorithm DeepAll could not
detect obvious targets in the image, such as sofa and bus
occupying a large area of the image. The proposed algo-
rithm could correctly detect and improve the recall ratio.
When there are occlusions between objects, the proposed
algorithm can detect the occluded objects to a certain ex-
tent, which again demonstrates the good generalization per-
formance of the model.

Ablation Experiment The key components of the method
in this paper include the graph convolutional network at
three levels and its corresponding losses. In order to better
understand the effect of each component of the model, the



Table 2: Performance comparison between the textual model and the DeepAll method

2*Task Source Domain S,W,V C,W,V C,S,V C,S,W 2*mAP
2* Target Domain C S W V 2*

2*Model DeepAll 50.90 66.42 63.65 53.96 58.73
2* Ours 54.67 69.72 65.62 54.12 61.03

Figure 4: Clipart

Figure 5: Sketch

Figure 6: Watercolor

control variable method is used to conduct ablation research
on each key component.

3 shows the statistical results obtained by removing any

Figure 7: VOC

Figure 8: Model detection performance comparison

level of the three-level graph convolution network respec-
tively. It can be obviously observed that mAP index is sig-
nificantly lower than that of the three modules when remov-
ing any module, especially after removing Gpixel, mAP de-
creases by 1.33%. After removing Ginstance, it decreases by
1.25%. After the above two modules are removed respec-
tively, the generalization task with sketch as the target do-
main is most affected. It can be inferred that semantic con-
straints at pixel level and instance level are more important
in data sets with large domain offset.

In addition, the total loss coefficient of the graph convo-
lutional network is a super parameter, which needs to be set
artificially. Experiments are also conducted in this paper to
prove that the model performs best when βG = 2.0. 4 is the
experimental result of using control variable method.



Table 3: Study on ablation of each Module of the model

2*Gpixel 2*Ginstance 2*Gdomain Source Domain S,W,V C,W,V C,S,V C,S,W 2*mAP
2* 2* 2* Target Domain C S W V 2*

54.36 67.89 64.91 53.70 60.22
54.02 68.04 65.15 53.87 60.27
54.14 69.28 66.11 54.33 60.97

Table 4: Study on the Total Coefficients βGof Graph Convolutional Networks

2*Task Source Domain S,W,V C,W,V C,S,V C,S,W 2*mAP
2* Target Domain C S W V 2*
2* 1.0 54.52 68.29 66.03 54.15 60.75

2*βG 2.0 54.67 69.72 65.62 54.12 61.03
2* 3.0 54.42 68.34 65.76 53.29 60.45
2* 4.0 54.31 68.33 65.39 52.89 60.23
2* 5.0 53.52 68.74 66.17 52.30 60.18

Conclusion and Future Works

Conclusion

Traditional deep learning requires a large number of manu-
ally marked data, and needs to meet the premise that training
and testing data follow independent and same distribution.
In practical application, marked data is not easy to obtain.
In order to reduce the dependence on marked data, the con-
cept of domain generalization is proposed, hoping to make
full use of multiple visible source domain data to make the
model still perform well in unknown domain. In the past,
domain generalization tasks were mostly carried out on the
classification tasks, and there was a certain distance between
the tasks in contact with the actual production and life, such
as the target detection task, and the target detection task was
more likely to be blocked by light and other fields to produce
domain deviation, thus resulting in poor model performance.

To solve the above problems, this paper proposes a do-
main generalization model for target detection tasks, so as
to improve the generalization ability of the target detection
model. The model uses the graph convolutional network to
conduct semantic constraints on the semantic information at
the pixel level, instance level and domain level, and strength-
ens the connection from the same category features, so that
the model focuses on the general features of the category
itself, rather than the local features, and enrichis the gener-
alization experience.

The method proposed in this paper effectively optimizes
the feature space, further explores the information contained
in the digital image itself, uses the graph convolution method
to spontaneously converge, fuse and update features, and
carries out semantic constraints. In order to verify the per-
formance of the proposed method, the corresponding exper-
imental verification and comparative analysis are carried out
on the self-built data set, and the statistical results prove the
effectiveness of the proposed method.

Future Works
This paper proposes a domain generalization model for tar-
get detection tasks, learns domain-independent features by
means of graph convolution, accumulates more generaliza-
tion experience, and achieves superior performance in the
face of more abstract target domains. However, there are still
some problems to be solved in this model, which can be im-
proved from the following aspects in the future:

First, the research focus of this paper is the task of gener-
alization from multi-source domain to single domain, which
reduces the dependence of deep learning on labeled sam-
ples. Currently, in order to further reduce the cost of label-
ing, new tasks such as generalization from single source do-
main to multi-target domain and generalization from multi-
source domain to multi-target domain are proposed, which
have not been covered in this paper. How to do well the gen-
eralization of multi-kind data sets is a meaningful research
direction.

Second, in the three-level graph convolutional network
constructed in this paper, pixel level and instance level net-
works play an important role in the model, while the role
of cross-domain graph convolutional network has not been
fully explored. How to make good use of domain labels to
reasonably model and constrain the semantic information
representing each domain may bring greater performance
improvement.
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